Directed C-H functionalization of pseudo-anomeric position of glycals substrates by metal-catalyzed processes

Morgane de Robichon,1 Andrea Bordessa,1 David Branquet,1 Maciej Malinowski,1,2 Jacques Uziel,1 Nadège Lubin-Germain,1 Angélique Ferry1

1 BioCIS, CY Cergy-Paris University, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise cedex, France.
2 Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland.

Current synthetic routes for C-arylglycosides involve multiple steps via prefunctionalized intermediates and frequently use strong bases. In recent years, C-H bond functionalization, which is an efficient transformation process, has become emerging in synthetic chemistry. To overcome the regioselectivity issues inherent in activating a specific C-H bond in complex substrates, the use of strategically placed directing groups (DG), has proven to be an effective strategy. However, examples of metal-catalyzed C-H functionalization (MCF) on sugars are still rare. MCF of Csp2-H bonds remains more developed in the literature examples than that of Csp3-H, thus making glycals (sugars possessing an intracyclic double bond) ideal partners to build C-C bonds at the anomeric position (position 1). Nevertheless, without DG, MCF on glycals occur almost exclusively at position 2 of the glycal. In order to direct the reactivity in position 1, it was considered in this PhD thesis project to place a DG at position 2 of the glycal. 8-Aminoquinoline (bidentate DG) is very popular in directed MCF examples and can be introduced in C2 via a palladocatalyzed aminocarbonylation methodology previously developed in the laboratory. During this PhD thesis, a directed pallado-catalyzed C-H arylation in the pseudo-anomeric position was set up from these C2-amidoglycals (Scheme 1, A). Through the use of different glycals and iodinated partners, various C-aryl/alkenylglycoside structures were synthesized. This allowed the synthesis of glycosylated amino acids and a Dapagliflozin analogue in excellent yields.

Scheme 1: Envisaged access to C-arylglycosides via directed FCM and molecules of interest

Inspired by this arylation, a nickel-catalyzed C-H alkynylation reaction was performed on the same pseudo-anomeric position of the glycal, using the same DG (Scheme 1, B). This alkynylation gives access to C-alkynylglycosides by using various glycals and alkyne bromides. Subsequently, a Huisgen cycloaddition reaction in the presence of copper could be performed, allowing the synthesis of various glycoconjugates in good yields. In particular, a lysine and a biotin derivative were introduced by this route.